1. PURPOSE

1.1 The purpose of this standard is to establish a generally acceptable standard for a mechanical Wastewater Interceptor System (WIS). Its purpose is to serve as a guide for producers, distributors, architects, engineers, contractors, installers, inspectors and users to promote understanding regarding the design intention, mechanical functions, controls and installation.

1.2 The provisions of this standard are not intended to prevent the use of any alternate system or method of grease removal and settled solids management control provided any such alternate meets the intent and requirements and changes are amended to this standard.

2. SCOPE

2.1 This standard covers general requirements, testing requirements, installation instructions, and markings and identification.

2.2 The test procedures and performance requirements in this standard are prescribed to verify the proper performance of the WIS as a pretreatment system that satisfies applicable federal, state and municipal wastewater for acceptable levels of FOG, TSS, pH and discharge velocity into a public or private sewage infrastructure. It also establishes a new operating parameter value for \(\text{H}_2\text{S} \).

2.3 A WIS is intended for retrofit into the main building sewer that connects to the POTW sewer lateral and in a manner that avoids building operational disruption. Although WIS units are intended for existing or retrofit construction only they may also be considered for new installation where controlled solids removal is warranted to avoid overburdening a grease interceptor so as to minimize \(\text{H}_2\text{S} \) gases and to keep \(\text{pH} \) as close to neutral as possible.

3. REFERENCED STANDARDS

3.1 All standards referenced herein shall be the current edition of that standard as published.
4. DEFINITIONS

4.1 FOG. Nonpetroleum fats, oils and grease.

4.2 Grinder Pump. A non-clogging, submersible type, commercial grade grinder pump designed to accept an inlet mixture of solids and liquids sewage effluent.

4.3 POTW. Publicly owned treatment works.

4.4 Sewage Pump. A non-clogging, submersible type, commercial grade, pump designed to accept sewage effluent in the secondary chamber for spraying waste water back over the primary chamber.

4.5 TSS. Total suspended solids.

4.6 Wastewater. “Special Waste” as defined in § 221.0 of the Uniform Plumbing Code (UPC), “Waste” as defined in UPC §225, “Sewage” as defined in UPC §221, or any combination of the foregoing.

4.7 Wastewater Interceptor System. WIS is an interactive wastewater interception system for separating waste materials collected from wastewater (e.g., waste and/or sewage from toilets, urinals and kitchen plumbing fixtures and drains), including FOG and solids, in a common line in a controlled manner. The WIS shall be designed to remove FOG and control solids from multiple waste streams of combined wastewater from both the kitchen waste stream containing FOG and the human sewage waste stream simultaneously.

5. GENERAL REQUIREMENTS

5.1 Wastewater Interceptor System.

5.1.1 Material. The WIS tank shall comply with the material requirements for grease interceptors specified in IAPMO/ANSI Z1001.
5.1.2 **Sizing.** The WIS tank size shall be design in the accordance with the following:

\[
V \text{ (min)} = F \times R \times S
\]

Where:
- \(V \text{ (min)} \) = Minimum WIS Operating Volume in gallons
- Flow Rate (F) (maximum) = in gallons per minute (gpm)
- Retention Time = 30 minutes
- Storage Factor = 25 percent

Thus:

\[
V \text{ (min)} = F \times 30 \times 1.25
\]

Note: The volume of the WIS shall take into consideration the slopped floor, grinder pumps in the primary chamber and sewage pumps in the secondary chamber and the volume of the common dividing wall.

5.1.3 **FLOW RATE (F).** The flow rate shall be determined based on the total flow rate from all equipment and plumbing fixtures connected to the WIS using one of the following equations:

1) Drainage Fixture Units (DFU) total of less than or equal to 40:

\[
F = (0.7 \times DFU)
\]

2) SMALL SIZE WIS with DFU total greater than 40 and up to 750:

\[
F = (0.2^* \times DFU) + 20
\]

Where:
- DFU = Drainage Fixture Unit Values, as established by UPC §702.0.

3) MEDIUM SIZE WIS with DFU over 750 and up to 5000:

4) LARGE SIZE WIS with DFU over 5000:

Note: \(F \) = Peak Flow Rate (gpm)

5.1.4 **RETENTION TIME (R).** The minimum retention time of 30 minutes is based on Wastewater Engineering, Treatment, Disposal and Reuse requirements under pg.1028.

5.1.5 **STORAGE FACTOR.** A minimum of 25% storage capacity is required for floatable fats, oil and grease and settled solids.

5.1.6 **Compartment Design.** The WIS shall have two compartments, referred to as the “primary compartment” and “secondary compartment”. The primary compartment shall be the inlet compartment and comprise not less than two-thirds (2/3) of the total required capacity of the WIS and in all cases shall be longer than the maximum inside width of the primary compartment. The secondary compartment shall be the outlet compartment and comprise not less than one-thirds (1/3) of the total required capacity of the WIS and
in all cases shall be longer than the maximum inside width of the secondary compartment. The primary chamber shall have a sloped floor at ¼” per foot and with transitional slopes directed towards the two grinder pumps installed on a level surface prior to the baffle or dividing wall of the two chambers. The walls surrounding the grinder pumps shall have rounded corners to avoid solids deposit.

In lieu of a one tank system, the primary chamber/compartment can be a separate tank from the secondary chamber/compartment provided that the 2/3 and 1/3 required proportion of volume, respectively, is maintained. An air venting system shall be provided equal to the cross-sectional area of the primary chamber liquid discharge (crossover pipe) to the secondary chamber in order to equalize the cavity air pressure.

5.1.7 **WIS Effluent Discharge Sample Port or Box.** A sample port or box with a minimum 12 inch diameter and a maximum 24” cover shall be provided on the effluent discharge side of the tank vessel to gather wastewater samples for testing of F.O.G. and TSS. It shall be installed after the solids discharge line coming from the grinder pumps but before the POTW connection.

5.2 **Submersible Pumps.** The grinder pumps in the primary compartment and the sewage pump in the secondary compartment shall comply with UL 778 and CSA C22.2 No. 108.

5.2.1 The primary compartment shall have at least two grinder pumps for removing the settled solids. The secondary compartment shall have at least two sewage pumps to spray over the solidifying FOG floating in the primary chamber.

5.2.2 **Pump Discharge.** The grinder pumps’ discharge flow rate at the WIS Effluent Discharge Sample Port or Box shall be controlled so as not to:

a) Exceed the flow rates shown in Table 1, and

b) Exceed the TSS limit specified in Section 6.2.2

<table>
<thead>
<tr>
<th>Pipe Size (inch)</th>
<th>Maximum Flow (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>260</td>
</tr>
<tr>
<td>6</td>
<td>700</td>
</tr>
<tr>
<td>8</td>
<td>1300</td>
</tr>
<tr>
<td>10</td>
<td>2600</td>
</tr>
<tr>
<td>12</td>
<td>3000</td>
</tr>
</tbody>
</table>

5.3 **Pump Controls.** The operations of the grinder and sewage spray pumps shall be automatically controlled. The controls shall be capable of being programmed (and reprogrammed, as appropriate) to cycle the operations of the pumps at preset intervals and to shut off and reset the operation of the pumps upon any high or low water event or in the case of blockage downstream causing a backup of wastewater into the WIS.
5.3.1 **Control Panel Enclosure.** The control panel enclosure shall comply with NEMA Standard 250, Type 3R. If the panel will be exposed to gases from the wastewater, a Type 4X or 12 shall be used.

5.3.2 Each WIS control panel shall be properly mounted to a structurally sound wall and housed within a weatherproof structure and protected from vehicular traffic and vandalism.

5.4 **Solids Removal.** The WIS shall remove the solids that accumulate at the bottom of the primary chamber automatically and in a controlled manner by means of controls of the grinder pumps and discharge to the passive flow effluent discharge pipe of the second chamber in accordance with Section 6.3 of this standard.

5.5 **Shutdown.** The WIS shall be equipped with a means to shutdown the operations of the pumps and allow the wastewater to flow by means of gravity through the system in the same manner as a passive flow grease interceptor in the event of a high or low water level within the system. The WIS shall also have means to reset and operate at normal or preset conditions once the normal levels of water are achieved.

5.6 **Sprayers.** The WIS shall be equipped with an overhead sprayer system in the primary chamber made of non-corrosive materials to spray water from the second chamber over the surface materials floating in the primary chamber.

6. TESTING REQUIREMENTS

6.1 **Hourly Average Velocity Pressure (VP) Testing Protocol is as follows:**

Measure the effluent discharge flow rate and velocity during the grinder pump’s operation and off cycles at intervals of five minutes or at least five times each during the pump's on and off cycle for a 1 hour period. Calculate the hourly average flow rate

Hourly average velocity at the pipe discharge (from the grinder pump) connection point downstream of the WIS and measured at the WIS Effluent Discharge Sample Port or Box shall not exceed the values shown in Table 2 for each given pipe size.

<table>
<thead>
<tr>
<th>Pipe Diameter Inch nominal</th>
<th>Minimum 1% Slope Velocity feet per second</th>
<th>Maximum 2% Slope Velocity feet per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>6</td>
<td>5.3</td>
<td>6.0</td>
</tr>
<tr>
<td>8</td>
<td>6.1</td>
<td>6.8</td>
</tr>
<tr>
<td>10</td>
<td>6.4</td>
<td>7.2</td>
</tr>
<tr>
<td>12</td>
<td>7.2</td>
<td>8.1</td>
</tr>
<tr>
<td>16</td>
<td>7.6</td>
<td>8.7</td>
</tr>
<tr>
<td>18</td>
<td>8.0</td>
<td>9.2</td>
</tr>
<tr>
<td>21</td>
<td>9.3</td>
<td>10.7</td>
</tr>
<tr>
<td>24</td>
<td>9.6</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Table 2
Note: The following measurement equipment may be used to measure the discharge flow rate from the WIS. A rectangular weir with an open channel flow analyzer, Ultrasonic flow sensor, and sensor mounting hardware. Weir set-up reference was taken from: Kent’s Mechanical Engineers’ Handbook, 12th Edition, Power, Section 5, Hydrodynamics, Hydraulics, and Pumps. (A Davis model GL 341 channel flow analyzer, model GL 310 ultrasonic flow sensor and model GL 3417 mounting hardware has been found to perform satisfactorily in this application.)

6.2 WIS Effluent Discharge Sampling

Sampling shall be performed by an Industrial Hygiene accredited testing laboratory. Sample specimen gathering shall occur in “non-controlled” and “real-time” operating conditions during (i) a tank occupancy of over 20% of FOG and settled solids (or “stressed condition”), and (ii) peak loading, at 5 minute intervals over a one hour period (the monitoring frequency may be less than five minute intervals if the WIS grinding cycle is less than five minutes in duration). Sampling periodicity should be timed to coincide with the WIS discharge cycle to ensure time-weighted averaging of the discharge flow. Take samples from the discharge sample port. Measure the FOG and TSS of each sample.

6.2.1 Sampling Analysis Methods and Procedures

All testing procedures shall be in accordance with the following methods or other officially accepted authority or standards.

<table>
<thead>
<tr>
<th>SAMPLE SPECIMEN</th>
<th>TESTING STANDARD</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fats, Oil & Grease (FOG)</td>
<td>EPA4</td>
<td>1664</td>
</tr>
<tr>
<td>Total Suspended Solids (TSS)</td>
<td>SM5</td>
<td>2540 D</td>
</tr>
<tr>
<td>pH</td>
<td>SM5</td>
<td>4500-H</td>
</tr>
</tbody>
</table>

6.2.2 Performance Requirements

Average FOG, TSS and H2S and pH values shall not exceed the limits established by applicable federal, state or municipal authorities or, in the absence of any applicable limits, the following:

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOG</td>
<td>100 mg/L</td>
</tr>
<tr>
<td>TSS</td>
<td>Authority Surcharge Level**</td>
</tr>
<tr>
<td>H2S</td>
<td>10 ppm</td>
</tr>
<tr>
<td>pH</td>
<td>6 to 11</td>
</tr>
</tbody>
</table>

* FOG = Total Oil & Grease - Total Petroleum Hydrocarbons
** That limit above which the applicable authority will assess surcharges.
*** pH values shall not be an average, but rather each sample shall not be outside the indicated range.

6.3 Discharge Velocity and Solids Removal Test

Install a WIS in accordance with the manufacturer’s installation instructions. For purposes of this test, the WIS may be installed above or below ground. The test setup shall be capable of supplying wastewater to the unit at a controlled rate up to at least 10% in excess of the manufacturer’s maximum allowable input flow rate. The inlet pipe shall extend straight,
with no couplings or fittings, a distance of 20 inside diameters before entering the WIS. Slope the inlet pipe toward the WIS at 1/4 inch per foot.

Set up a manometer or other measuring device to measure the inlet line head in inches of water column as shown in Figure 1. A clear section of glass or plastic pipe may be used in place of a manometer. Conduct the following tests with the flowing, inlet head equal to one-half the inside pipe diameter measured from the inside bottom pipe wall. This is equivalent to the inlet pipe being one-half filled with liquid at all times. The tolerance throughout the test shall be kept within 1/4 inch (± 1/4 inch).

Establish a constant flow condition through the WIS using the inlet head specified above. Measure the average flow rate over a five minute period. This shall be noted as the normal gravity flow.

With the inlet water flow rate set to normal gravity flow, operate the pumps through three normal pump cycles. Measure the maximum discharge flow rate from the WIS during the three cycles. Maintain the inlet line head at the level needed to achieve normal gravity flow.

6.3.1 Performance Parameter Requirement.

a) The effluent discharge flow rate downstream of the pressure relief line of the grinder pump shall not exceed the flow rate produced by normal gravity flow plus the grinder pump intermittent discharge output;

b) The effluent discharge velocity shall not exceed the velocity provided for in Section 6.1; and

c) The WIS solids discharge rate shall not exceed the TSS limit specified in Section 6.2.2
7. INSTALLATION INSTRUCTIONS

7.1 The WIS installation instructions shall contain the following:

7.1.1 WIS Tank sizing and design shall be in accordance with manufacturer’s specifications and Section 5 of IAPMO IGC XXX.

7.1.2 Each WIS control panel shall be properly mounted to a structurally sound wall and housed within a weatherproof structure and protected from vehicular traffic and vandalism.

8. MARKINGS & IDENTIFICATION

8.1 Each WIS tank shall be permanently and legibly marked with the following:
 a) Manufacturer’s name or trademark;
 b) Nominal tank size or capacity; and

8.1.1 Each 24” diameter manhole cover shall be stamped “Wastewater Interceptor” to identify the WISIS tank.

8.2 The control panel enclosure shall be permanently and legibly marked with the following:
 a) Manufacturer’s name or trademark; and
 b) NEMA (National Electrical Manufacturers Association) enclosure classification

Adopted: 7/2007
4. EPA – US Environmental Protection Agency

5. SM – Standard Methods for the Examination of Water and Wastewater
1. PURPOSE

1.1 The purpose of this standard is to establish a generally acceptable standard for a mechanical Wastewater Interceptor System (WIS). Its purpose is to serve as a guide for producers, distributors, architects, engineers, contractors, installers, inspectors and users to promote understanding regarding the design intention, mechanical functions, controls and installation.

1.2 The provisions of this standard are not intended to prevent the use of any alternate system or method of grease removal and settled solids management control provided any such alternate meets the intent and requirements and changes are amended to this standard.

2. SCOPE

2.1 This standard covers general requirements, testing requirements, installation instructions, and markings and identification.

2.2 A WIS is intended for retrofit into the main building sewer that connects to the POTW sewer lateral and in a manner that avoids building operational disruption. Although WIS units are intended for existing or retrofit construction only they may also be considered for new installation where controlled solids removal is warranted to avoid overburdening a grease interceptor.

3. REFERENCED STANDARDS

3.1 All standards referenced herein shall be the current edition of that standard as published

- CSA C22.2 No.108 Liquid Pumps
- IAPMO/ANSI Z1001 Prefabricated Grease Interceptors
- NEMA 250 Enclosures for Electrical Equipment (1000 Volts Maximum)
- UL 778 Motor-Operated Water Pumps
- UPC Uniform Plumbing Code
4. DEFINITIONS

4.1 **FOG.** Nonpetroleum fats, oils and grease.

4.2 **Grinder Pump.** A non-clogging, submersible type, commercial grade grinder pump designed to accept an inlet mixture of solids and liquids sewage effluent.

4.3 **POTW.** Publicly owned treatment works.

4.4 **Sewage Pump.** A non-clogging, submersible type, commercial grade, pump designed to accept sewage effluent in the secondary chamber for spraying waste water back over the primary chamber.

4.5 **TSS.** Total suspended solids.

4.6 **Wastewater.** “Special Waste” as defined in § 221.0 of the Uniform Plumbing Code (UPC), “Waste” as defined in UPC §225, “Sewage” as defined in UPC §221, or any combination of the foregoing.

4.7 **Wastewater Interceptor System.** WIS is an interactive wastewater interception system for separating waste materials collected from wastewater (e.g., waste and/or sewage from toilets, urinals and kitchen plumbing fixtures and drains), including FOG and solids, in a common line in a controlled manner. The WIS shall be designed to remove FOG and control solids from multiple waste streams of combined wastewater from both the kitchen waste stream containing FOG and the human sewage waste stream simultaneously.

5. GENERAL REQUIREMENTS

5.1 **Wastewater Interceptor System.**

5.1.1 **Material.** The WIS tank shall comply with the material requirements for grease interceptors specified in IAPMO/ANSI Z1001.

5.1.2 **Sizing.** The WIS tank size shall be design in the accordance with the following:

\[V (\text{min}) = F \times R \times S \]

Where:
- \(V (\text{min}) \) = Minimum WIS Operating Volume in gallons
- Flow Rate (\(F \)) (maximum) = in gallons per minute (gpm)
- Retention Time = 30 minutes
- Storage Factor = 25 percent

Thus:
\[V (\text{min}) = F \times 30 \times 1.25 \]

Note: The volume of the WIS shall take into consideration the slopped floor, grinder pumps in the primary chamber and sewage pumps in the secondary chamber and the volume of the common dividing wall.
5.1.3 **FLOW RATE (F).** The flow rate shall be determined based on the total flow rate from all equipment and plumbing fixtures connected to the WIS using one of the following equations:

1) Drainage Fixture Units (DFU) total of less than or equal to 40:
 \[F = (0.7 \times DFU) \]

2) SMALL SIZE WIS with DFU total greater than 40 and up to 750:
 \[F = (0.2^* \times DFU) + 20 \]

Where: \(DFU = \) Drainage Fixture Unit Values, as established by UPC §702.0.

3) MEDIUM SIZE WIS with DFU over 750 and up to 5000:

4) LARGE SIZE WIS with DFU over 5000:

Note: \(F = \) Peak Flow Rate (gpm)

5.1.4 **RETENTION TIME (R).** The minimum retention time of 30 minutes is based on Wastewater Engineering, Treatment, Disposal and Reuse requirements under pg. 1028.

5.1.5 **STORAGE FACTOR.** A minimum of 25% storage capacity is required for floatable fats, oil and grease and settled solids.

5.1.6 **Compartment Design.** The WIS shall have two compartments, referred to as the “primary compartment” and “secondary compartment”. The primary compartment shall be the inlet compartment and comprise not less than two-thirds (2/3) of the total required capacity of the WIS and in all cases shall be longer than the maximum inside width of the primary compartment. The secondary compartment shall be the outlet compartment and comprise not less than one-thirds (1/3) of the total required capacity of the WIS and in all cases shall be longer than the maximum inside width of the secondary compartment. The primary chamber shall have a sloped floor at ¼” per foot and transitional slopes directed towards the two grinder pumps installed on a level surface prior to the baffle or dividing wall of the two chambers. The walls surrounding the grinder pumps shall have rounded corners to avoid solids deposit.

In lieu of a one tank system, the primary chamber/compartment can be a separate tank from the secondary chamber/compartment provided that the 2/3 and 1/3 required proportion of volume, respectively, is maintained. An air venting system shall be provided equal to the cross-sectional area of the primary chamber liquid discharge (crossover pipe) to the secondary chamber in order to equalize the cavity air pressure.

5.1.7 **WIS Effluent Discharge Sample Port or Box.** A sample port or box with a minimum 12 inch diameter and a maximum 24” cover shall be provided on the effluent discharge side.
of the tank vessel to gather wastewater samples for testing of F.O.G. and TSS. It shall be installed after the solids discharge line coming from the grinder pumps but before the POTW connection.

5.2 Submersible Pumps. The grinder pumps in the primary compartment and the sewage pump in the secondary compartment shall comply with UL 778 and CSA C22.2 No. 108.

5.2.1 The primary compartment shall have at least two grinder pumps for removing the settled solids. The secondary compartment shall have at least two sewage pumps to spray over the solidifying FOG floating in the primary chamber.

5.2.2 Pump Discharge. The grinder pumps’ discharge flow rate at the WIS Effluent Discharge Sample Port or Box shall be controlled so as not to:

Exceed the flow rates shown in Table 1

<table>
<thead>
<tr>
<th>Pipe Size (inch)</th>
<th>Maximum Flow (gpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>110</td>
</tr>
<tr>
<td>4</td>
<td>260</td>
</tr>
<tr>
<td>6</td>
<td>700</td>
</tr>
<tr>
<td>8</td>
<td>1300</td>
</tr>
<tr>
<td>10</td>
<td>2600</td>
</tr>
<tr>
<td>12</td>
<td>3000</td>
</tr>
</tbody>
</table>

5.3 Pump Controls. The operations of the grinder and sewage spray pumps shall be automatically controlled. The controls shall be capable of being programmed (and reprogrammed, as appropriate) to cycle the operations of the pumps at preset intervals and to shut off and reset the operation of the pumps upon any high or low water event or in the case of blockage downstream causing a backup of wastewater into the WIS.

5.3.1 Control Panel Enclosure. The control panel enclosure shall comply with NEMA Standard 250, Type 3R. If the panel will be exposed to gases from the wastewater, a Type 4X or 12 shall be used.

5.3.2 Each WIS control panel shall be properly mounted to a structurally sound wall and housed within a weatherproof structure and protected from vehicular traffic and vandalism.

5.4 Shutdown. The WIS shall be equipped with a means to shutdown the operations of the pumps and allow the wastewater to flow by means of gravity through the system in the same manner as a passive flow grease interceptor in the event of a high or low water level within the system. The WIS shall also have means to reset and operate at normal or preset conditions once the normal levels of water are achieved.
5.5 Sprayers. The WIS shall be equipped with an overhead sprayer system in the primary chamber made of non-corrosive materials to spray water from the second chamber over the surface materials floating in the primary chamber.

6. TESTING REQUIREMENTS

6.1 Hourly Average Velocity Pressure (VP) Testing Protocol is as follows:

Measure the effluent discharge flow rate and velocity during the grinder pump’s operation and off cycles at intervals of five minutes or at least five times each during the pump’s on and off cycle for a 1 hour period. Calculate the hourly average flow rate.

Hourly average velocity at the pipe discharge (from the grinder pump) connection point downstream of the WIS and measured at the WIS Effluent Discharge Sample Port or Box shall not exceed the values shown in Table 2 for each given pipe size.

<table>
<thead>
<tr>
<th>Pipe Diameter Inch nominal</th>
<th>Minimum 1% Slope Velocity feet per second</th>
<th>Maximum 2% Slope Velocity feet per second</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4.5</td>
<td>5.0</td>
</tr>
<tr>
<td>6</td>
<td>5.3</td>
<td>6.0</td>
</tr>
<tr>
<td>8</td>
<td>6.1</td>
<td>6.8</td>
</tr>
<tr>
<td>10</td>
<td>6.4</td>
<td>7.2</td>
</tr>
<tr>
<td>12</td>
<td>7.2</td>
<td>8.1</td>
</tr>
<tr>
<td>16</td>
<td>7.6</td>
<td>8.7</td>
</tr>
<tr>
<td>18</td>
<td>8.0</td>
<td>9.2</td>
</tr>
<tr>
<td>21</td>
<td>9.3</td>
<td>10.7</td>
</tr>
<tr>
<td>24</td>
<td>9.6</td>
<td>11.1</td>
</tr>
</tbody>
</table>

Note: The following measurement equipment may be used to measure the discharge flow rate from the WIS. A rectangular weir with an open channel flow analyzer, Ultrasonic flow sensor, and sensor mounting hardware. Weir set-up reference was taken from: Kent’s Mechanical Engineers’ Handbook, 12th Edition, Power, Section 5, Hydrodynamics, Hydraulics, and Pumps. (A Davis model GL 341 channel flow analyzer, model GL 310 ultrasonic flow sensor and model GL 3417 mounting hardware has been found to perform satisfactorily in this application.)

7. INSTALLATION INSTRUCTIONS

7.1 The WIS installation instructions shall contain the following:

7.1.1 WIS Tank sizing and design shall be in accordance with manufacturer’s specifications and Section 5 of this standard.
7.1.2 Each WIS control panel shall be properly mounted to a structurally sound wall and housed within a weatherproof structure and protected from vehicular traffic and vandalism.

8. MARKINGS & IDENTIFICATION

8.1 Each WIS tank shall be permanently and legibly marked with the following:
 a) Manufacturer's name or trademark;
 b) Nominal tank size or capacity; and

8.1.1 Each 24" diameter manhole cover shall be stamped “Wastewater Interceptor” to identify the WIS tank.

8.2 The control panel enclosure shall be permanently and legibly marked with the following:
 a) Manufacturer's name or trademark; and
 b) NEMA (National Electrical Manufacturers Association) enclosure classification

Adopted: 7/2007
Revised: 9/2007